Code: 22MEMD2T6C

I M.Tech - II Semester - Regular Examinations - JULY - 2023

CONCURRENT ENGINEERING (MACHINE DESIGN)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Discuss about Integrated product	L2	CO1	8 M			
		development.						
	b)	Explain about CE tool box collaborative	L3	CO1	7 M			
		product development.						
OR								
2	Def	fine and explain the term concurrent	L2	CO1	15 M			
	engineering? Why it is concurrent? List out and							
	discuss about the main objectives of concurrent							
	engineering?							
	engineering:							
TINITED TT								
UNIT-II								
3	a)	What do you mean by product life cycle?	L2	CO2	8 M			
		What is life cycle cost?						

	b)	List and explain essential features of	L3	CO2	7 M
		optimal structural design process.			
	T	OR		1	
4	Def		L3	CO2	15 M
		npatibility approach of modeling Concurrent			
	Eng	gineering (CE) design.			
		TINITE TIT			
		UNIT-III			
5	a)	Elaborate the need of conceptual design	L2	CO3	7 M
J		mechanism.			/ 1/1
	b)	Interpret about intelligent design for	L2	CO3	8 M
		manufacturing system.			
		OR			
6	Des	scribe about modelling and reasoning for	L3	CO3	15 M
	con	nputer based assembly planning with an			
	exa	mple.			
		UNIT-IV			
7			1.0	004	0.14
7	a)	Give preliminary evaluation Procedure to	L3	CO4	8 M
		perform economic evaluation of			
	h)	manufacturing cost. Discuss about pagetiation in Concurrent	1 2	CO4	7 M
	b)	Discuss about negotiation in Concurrent Engineering design.	LZ	004	/ IVI
		Liighteering design.			
		OR			

8	Write short notes on the following:		CO4	15 M
	(i) Decomposition in concurrent design			
	(ii) Some aspects of design for economics.			